Infrastructure Week, Day 2: Water

Water is a vital resource, but with a rise in deteriorating infrastructure and underfunded programs like the Drinking Water State Revolving Fund (DWSRF), we’ve run into a nationwide problem.

In recent years, we’ve witnessed water crisis on a national scale in places like Michigan, Texas, Florida, Puerto Rico, and even closer to home here in New York, as well as in the Southwest United States, where drought conditions continue to worsen.

Over one million miles of pipes work to deliver water around the county, most of that aging infrastructure having been laid numerous decades ago. Now more than ever, America requires government action to upgrade insufficient water infrastructure. Clean, reliable drinking water is a commodity that everyone, without exception, should have access to.

At KC Engineering and Land Surveying, P.C. (KC), our water supply group works to create sufficient, long-term resolutions to provide safe drinking water. With a group of skilled water, wastewater, civil, and environmental engineers, KC is able to provide lasting solutions to various municipalities, residential developments, and many more.

With projects like the Wallkill Water System Interconnect, Kosuga Well 7 Development, and LaGuardia Airport Trunk Main Relocation, KC continues to play a vital role in ensuring the functionality of filtration systems, water resources, and water treatment.


Everything You Wanted to Know About Water Treatment Plants

Did you know that 99.7% of Earth’s water supply is not usable by humans? This unusable supply includes not only saltwater but fresh water supplies from lakes and streams that often contain Cryptosporidium, E. coli, Hepatitis A, and Giardia intestinalis. The water we drink, from taps and bottles and fountains, goes through an extensive treatment process to rid itself of these harmful pathogens.

A water treatment plant serves its local community by sourcing its water from the surface, from lakes, streams, reservoirs, or from the ground, where water pools after seeping in from rain or snowfall. The plant is then tasked with disinfecting and purifying this “raw,” or untreated, water.

Below is a step-by-step look into how your water is treated:

The first step of the purification process is coagulation and flocculation: in this step, a coagulant, such as aluminum sulphate or iron salt, is added to the water to neutralize the negative charge of any dirt, parasite, or bacteria that might be present. This neutralization enlarges the harmful particles in preparation for the following step.

The second step is referred to as sedimentation, where the now enlarged dirt particles can more easily sink to the bottom of the water.

The third step is filtration, where the water is run through sand, gravel, or charcoal to weed out the enlarged dirt particles.

The fourth step is disinfection where a chemical such as chlorine or chloramine is added to the water to both kill any remaining parasites or bacteria and prevent the growth of new ones.

Finally, the purified water is stored in a water tower and, with plenty of gravity and pumps, is delivered into your home.

Want to find out more about the quality of your drinking water? Visit this site to access an annual drinking water quality report from your local water supplier.


Infrastructure Week, Day 2: Water

Water is a vital resource, but with a rise in deteriorating infrastructure and underfunded programs like the Drinking Water State Revolving Fund (DWSRF), we’ve run into a nationwide problem.

In recent years, we’ve witnessed water crisis on a national scale in places like Flint, Michigan, whose citizens haven’t had access to clean water in nearly four years; Texas, Florida, and especially Puerto Rico, where recent hurricanes damaged municipal water services; and the Southwest United States, where drought conditions continue to worsen.

Over one million miles of pipes work to deliver water around the country, most of that aging infrastructure having been laid numerous decades ago. Now more than ever, America requires government action to upgrade insufficient water infrastructure. Clean, reliable drinking water is a commodity that everyone, without exception, should have access to.

At KC Engineering and Land Surveying, P.C. (KC), our water supply group works to create sufficient, long-term resolutions to provide safe drinking water. With a group of skilled water, wastewater, civil, and environmental engineers, KC is able to provide lasting solutions to various municipalities, residential developments, and many more.

With projects like the Wallkill Water System Interconnect, Kosuga Well 7 Development, and LaGuardia Airport Trunk Main Relocation, KC continues to play a vital role in ensuring the functionality of filtration systems, water resources, and water treatment.


Woodland Acres Water Main Extension Project

The Woodland Acres community comprises of single-family homes and serves approximately 150 residents through 38 residential connections. The Woodland Acres Treatment Facility had been experiencing reduced output from its wells and needed solutions to improve water service to the Woodland Acres community. The development had been serviced by a small water treatment plant and two wells. The wells were no longer able to produce adequate water supply for the area, and attempts to develop new wells in the area had been unsuccessful.

To remedy the issue, KC proposed an expansion of the existing water service from the Town of Wallkill’s Consolidated Water District #1 to serve the Woodland Acres community.

The project extended water via a new 8” PVC C900 water main from a dead end in the Town of Wallkill’s consolidated water district at the end of Orchard Terrace to the Woodland Acres development off Sands Road. The development is now provided with adequate water by the extension, and the project eliminated the need to build a replacement water treatment plant at the site. The project also allowed the Town of Wallkill Water Department to discontinue operation of the Woodland Acres Water Treatment Plant. The project also eliminated the dead-end water line stub in Orchard Hill.

The construction phase involved construction through easements across private property, a NYSDOT road crossing, installation of a meter pit, and tapped connections at each end of the installation.


What, Why, How — Water Treatment Plants

Did you know that 99.7% of Earth’s water supply is not usable by humans? This unusable supply includes not only saltwater but fresh water supplies from lakes and streams that often contain waterborne germs such as Cryptosporidium, E. coli, Hepatitis A, and Giardia intestinalis. The water we drink, from taps and bottles and fountains, goes through an extensive treatment process to rid itself of these harmful pathogens.

A water treatment plant serves its local community by sourcing its water from the surface, from lakes, streams, reservoirs, or from the ground, where water pools after seeping in from rain or snowfall. The plant is then tasked with disinfecting and purifying this “raw,” or untreated, water. Below is a step-by-step look into how your water is treated:

  1. The first step of the purification process is coagulation and flocculation: in this step, a coagulant, such as aluminum sulphate or iron salt, is added to the water to neutralize the negative charge of any dirt, parasite, or bacteria that might be present. This neutralization enlarges the harmful particles in preparation for the following step.
  2. The second step is referred to as sedimentation, where the now enlarged dirt particles can more easily sink to the bottom of the water.
  3. The third step is filtration, where the water is run through sand, gravel, or charcoal to weed out the enlarged dirt particles.
  4. The fourth step is disinfection where a chemical such as chlorine or chloramine is added to the water to both kill any remaining parasites or bacteria and prevent the growth of new ones.
  5. Finally, the purified water is stored in a water tower and, with plenty of gravity and pumps, is delivered into your home.

Want to find out more about the quality of your drinking water? Visit this site to access an annual drinking water quality report from your local water supplier.